Article 4417

Title of the article



Dang Van Vin', Candidate of physical and mathematical sciences, lecturer, State Polytechnic Institute of HochiMinh (268 Ly Thuong Kiet, dist 10, Hochiminh city, Vietnam),
Korabel'shhikova Svetlana Jur'evna, Candidate of physical and mathematical sciences, associate professor, sub-department of informatics and information security, Northern (Arctic) Federal University named after M. V. Lomonosov (17 Severnoy Dviny embankment, Arkhangelsk, Russia).
Mel'nikov Boris Feliksovich, Doctor of physical and mathematical sciences, professor, sub-department of information systems and networks, Russian State Social University  (4 Wilgelma Pika street, Moscow, Russia),

Index UDK





Background. The subjects of the study are semigroups and some predicates defined on them, in particular the equality predicate, the predicate of the occurrence of an element in a subsemigroup and a more complicated special predicate defined on subsets of the set of a free monoid.
Materials and methods. To solve this and similar problems, we describe a special semigroup that plays the role of a minimal semigroup for the whole class of predicates under consideration. Moreover, the semigroup considered here does not often contain either one or zero, but in this case it contains an infinite number of idempotents, and the presence of each of them is mandatory.
Results. In the described class of semigroups, we obtained the minimal one from the point of view of approximation with respect to the whole class of predicates. Examples of semigroups from various fields of mathematics are given.
Conclusion. The problem of approximation of semigroups consists of three components. The first is the set of algebraic structures used – such as groups, semi groups, etc. The second component is the set of predicates considered above these structures. And the third component is various variants of describing the homomorphism over the objects under consideration; some examples from different fields of mathematics are given in this article. Changing any one of these three components, we always get a new direction for further research.

Key words

approximation of semigroups, minimal semigroup of approximation, private subsemigroup, free semigroup 

Download PDF

1. Mal'tsev A. I. Izbrannye trudy. T. 1. Klassicheskaya algebra [Selected works. Vol. 1. Classical algebra]. Moscow: Nauka, 1976, 484p.
2. Lesokhin M. M., Golubov E. A. Matematicheskie zapiski Ural'skogo universiteta [Mathematical notes of Ural University]. 1966, vol. 5, no. 3, pp. 82–90.
3. Golubov E. A. Izvestiya vysshikh uchebnykh zavedeniy. Matematika [University proceedings. Mathematics]. 1969, no. 2, pp. 23–31.
4. Lesokhin M. M. Uchenye zapiski Leningradskogo pedagogicheskogo instituta GPI im. A. I. Gertsena [Proceedings of Leningrad Pedagogical Institute of the State Pedagogical Institute named after A.I. Gertsen]. 1971, vol. 404, pp. 191–219.
5. Mamikonyan S. G. Matematicheskiy sbornik [Mathematical collection]. 1972, vol. 88 (130), no. 3 (7), pp. 353–359.
6. Ignat'eva I. V. Sovremennaya algebra: mezhvuz. sb. nauch. tr. [Modern algebra: interuniversity collected papers]. Issue 1. Rostov-on-Don, 1996, pp. 25–30.
7. Zyablitseva L. V., Korabel'shchikova S. Yu., Popov I. N. Nekotorye spetsial'nye polugruppy i ikh gomomorfizmy [Some special semigroups and their homomorphisms]. Arkhangel'sk: Izd-vo SAFU, 2013, 128 p.
8. Dummit D. S., Foote R. M. Abstract Algebra. New York: John Wiley & Sons, 2004, 932 p.
9. Clark C. E., Carruth J. H. Semigroup Forum. 1980, vol. 20 (2), pp. 95–127.
10. Shiryaev V. M. Doklady AN BSSR [Reports of AS BSSR]. 1985, vol. XXIX, no. 4, pp. 300–303.
11. Dang V. V., Korabel'shchikova S. Yu., Mel'nikov B. F. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2015, no. 3 (35), pp. 88–99.
12. Obshchaya algebra [General algebra]. Ed. L. A. Skornyakov. Moscow: Nauka, 1991, vol. 2, 480 p.
13. Shevrin L. N. Fundamental'naya i prikladnaya matematika [Fundamental and applied mathematics]. 2008, vol. 14, no. 6, pp. 219–229.
14. Petrich M. Introduction to Semigroups. Ohio: Columbus, USA, 1973, 193 p.
15. Tolkacheva E. A. Approksimatsiya trekhosnovnykh polugruppovykh distributivnykh algebr: dis. kand. fiz.-mat. nauk: 01.01.06 [Approximation of ternary semigroup distributive algebras: dissertation to apply for the degree of the candidate of physical and mathematical sciences]. Saint-Petersburg: Ros. gos. ped. universitet im. A. I. Gertsena, 2006, 93 p.
16. Salomaa A. Zhemchuzhiny teorii formal'nykh yazykov [The pearls of the theory of formal languages]. Moscow: Mir, 1986, 162 p.
17. Mel'nikov B. F., Korabel'shchikova S. Yu., Churikova N. P. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2017, no. 3 (43), pp. 87–99.
18. Mel'nikov B. F. Izvestiya vysshikh uchebnykh zavedeniy. Matematika [University proceedings. Mathematics]. 2004, no. 3, pp. 46–56.
19. Lyapin E. S. Polugruppy [Semigroups]. Moscow: Fizmatlit, 1960, 592 p.
20. Clifford A., Preston G. B. The Algebraic Theory of Semigroup. USA: Providence. 1972, 225 p.
21. Melnikov B. F. International Journal of Foundation of Computer Science. 1993, vol. 4, no. 3, pp. 267–273.
22. Brosalina A., Melnikov B. Informatica (Lithuanian Acad. of Sciences). 2000, vol. 11, no. 4, pp. 353–370.
23. Alekseeva A. G., Mel'nikov B. F. Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta [Scientific vector of Togliatti State University]. 2011, no. 3, pp. 30–33.
24. Computer Science Stack Exchange [Elektronnyy resurs] Obmen znaniyami o teoreticheskoy informatike [Knowledge exchange in theoretical informatics]. Available at: https://, svobodnyy (accessed October 10, 2017).
25. Glushkov V. M. Uspekhi matematicheskikh nauk [Progress of mathematical sciences]. 1961, vol. 16, no. 6 (101), pp. 3–62.
26. Melnikov B. Fundamenta Informaticae. 2010, vol. 104, no. 3, pp. 267–283.
27. Mel'nikov B. F., Mel'nikova A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2011, no. 4 (20), pp. 59–69.
28. Melnikov B. International Journal of Open Information Technologies. 2017, vol. 5, no. 10, pp. 9–17.


Дата создания: 20.04.2018 15:00
Дата обновления: 23.04.2018 08:57